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Abstract. Deep neural networks (DNNs) have significantly advanced
image denoising, particularly in challenging noise conditions encountered
in medical imaging. However, both traditional and many learning-based
approaches rely on high-quality, noiseless ground truth images, which
are difficult to obtain in practice for modalities such as magnetic reso-
nance imaging (MRI). This limitation has motivated unsupervised learn-
ing strategies based on unbiased risk estimation. In this work, we study
estimator-driven denoising for MRI and benchmark Stein’s Unbiased
Risk Estimator (SURE), its paired-observation extension (eSURE), and
an extended Poisson unbiased risk formulation (ePURE) within a uni-
fied experimental framework. We evaluate these methods on fully sam-
pled 3T knee MRI data under synthetic Gaussian and Poisson noise,
reflecting common additive and signal-dependent corruption models in
medical imaging. Our results show that eSURE consistently improves
over single-image SURE training and achieves performance comparable
to Noise2Noise and supervised baselines, with gains of up to 2.4dB in
PSNR across axial and coronal views. Under Poisson noise, the proposed
ePURE formulation attains PSNR values up to 32.45dB while preserv-
ing structural fidelity. These findings demonstrate that unbiased risk
estimation provides a practical and robust foundation for unsupervised
MRI denoising when clean reference data is unavailable.

Keywords: MRI denoising, unsupervised learning, Stein’s unbiased risk
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1 Introduction

Magnetic Resonance Imaging (MRI) is a mainstay of clinical diagnosis because
it provides rich soft-tissue contrast without ionizing radiation [1]. In practice,
however, MRI acquisitions are inevitably corrupted by noise arising from the
measurement process and the subsequent reconstruction pipeline, which can
blur fine anatomical boundaries and reduce the reliability of downstream tasks
such as segmentation, quantitative mapping, and longitudinal comparison [2, 3].
Classical denoisers, notably BM3D[8], remain strong baselines in many imaging
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conditions [8,9]. Yet, over the past decade, deep neural network (DNN) denois-
ers have repeatedly demonstrated superior restoration fidelity and a favorable
accuracy-efficiency trade-off when trained appropriately for the noise statistics
of interest [10].

The principal obstacle for supervised denoising in medical imaging is the ab-
sence of truly clean reference images. Collecting noiseless targets is rarely feasi-
ble because scan-time constraints, patient motion, and hardware limitations im-
pose hard bounds on averaging and repeated acquisition. Consequently, “clean”
targets are typically approximated using proxy procedures (e.g., averaging or
vendor-specific processing), which may retain residual noise or introduce sub-
tle bias [20]. These constraints have driven substantial interest in unsupervised
and self-supervised learning paradigms that can train denoisers directly from
noisy measurements. Classical noise modeling and restoration principles remain
influential in medical imaging, and non-local methods such as Non-Local Means
(NLM) and its variants have long served as important baselines for MRI denois-
ing [5-7]. In the deep learning era, several strategies have emerged to relax the
need for clean targets. Deep Image Prior (DIP) exploits the implicit bias of con-
volutional architectures to fit a single noisy image [11], while Noise2Noise (N2N)
trains using pairs of noisy observations of the same underlying anatomy, elimi-
nating the need for noiseless references [12]. Related masking-based approaches
such as Noise2Void and Noise2Self further reduce data requirements by learn-
ing from single noisy images under conditional independence assumptions [13,
14]. Earlier work has also explored training deep denoisers without ground truth
supervision under carefully specified statistical conditions [15].

Stein’s Unbiased Risk Estimator (SURE) yields an unbiased estimate of
MSE under additive i.i.d. Gaussian noise [16, 17], and Monte-Carlo SURE (MC-
SURE) makes this principle practical for modern deep networks via stochastic
approximation of the divergence term [18,19]. When two noisy observations are
available-even if they are correlated-extended SURE (eSURE) connects SURE-
type objectives to N2N-style training under Gaussian assumptions [20]. For
count-driven regimes where Poisson noise is more appropriate, Poisson unbi-
ased risk estimators (PURE) and their extensions provide analogous training
objectives under Poisson statistics [22-25].

SURE, eSURE, and PURE are not introduced by this work. The contribu-
tion of this paper is a careful adaptation and validation of these estimator-driven
learning strategies in a realistic MRI denoising workflow, with an emphasis on
clarifying when each estimator is preferable under Gaussian versus Poisson cor-
ruption. Concretely, we (i) implement SURE/MC-SURE and eSURE training for
Gaussian MRI denoising, and (ii) operationalize an ePURE-style objective for
Poisson-corrupted MRI using correlated noisy pairs, formed through the aver-
aged observation z = %, to improve training stability when clean references
are unavailable. All methods are evaluated on fully sampled 3T knee MRI data

[28] using DnCNN as a common denoising backbone [10].

The remainder of the paper is organized as follows.
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Contributions. While SURE, eSURE, and PURE have been previously intro-
duced, this work makes the following concrete contributions in the context of
MRI denoising:

— We provide a unified empirical comparison of SURE, eSURE, Noise2Noise,
and supervised training under matched experimental conditions on fully sam-
pled 3T knee MRI.

— We validate the practical benefit of paired-observation eSURE training for
MRI, showing consistent improvements over single-image MC-SURE across
views and noise levels.

— We operationalize a stabilized ePURE-style objective for Poisson-corrupted
MRI using correlated noisy pairs, demonstrating stable training and high-
fidelity reconstructions without clean references.

— We analyze estimator behavior under both additive (Gaussian) and signal-
dependent (Poisson) noise to clarify when each unbiased risk formulation is
preferable in practice.

Research Questions. This study is guided by the following research questions:

— RQ1: Does paired-observation eSURE training provide measurable advan-
tages over single-image MC-SURE for MRI denoising under Gaussian noise?

— RQ2: How does eSURE compare empirically to Noise2Noise and supervised
MSE training when applied to realistic MRI data?

— RQ3: Can a stabilized Poisson unbiased risk formulation enable effective
unsupervised MRI denoising under signal-dependent noise?

Section 2 reviews SURE, MC-SURE, and related unbiased-risk estimators.
Section 3 presents the estimator-driven training formulations used in our study
for Gaussian and Poisson noise, including eSURE and an ePURE-style objective.
Section 4 reports experimental results on 3T knee MRI, including quantitative
PSNR comparisons and qualitative analyses. Section 5 presents Poisson unbi-
ased risk estimation for MRI denoising, and Section 6 concludes with practical
takeaways, limitations, and directions for future work. Throughout this paper,
we focus on controlled Gaussian and Poisson corruptions to isolate estimator
behavior under well-defined noise statistics; extension to Rician and mixed noise
models that more directly reflect magnitude MRI is left for future work [4].

2 Background

We briefly summarize the theoretical foundations of unbiased risk estimation for
image denoising, focusing on Stein’s Unbiased Risk Estimator (SURE) and its
Monte-Carlo approximation.

2.1 Stein’s Unbiased Risk Estimator (SURE)

In the context of denoising Gaussian-contaminated signals or images, a standard
observation model is
y=x+mn, (1)
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where z € RY denotes an unknown deterministic signal or image, y € RY is
the observed measurement, and n € R represents additive i.i.d. Gaussian noise
with distribution n ~ N(0,02I), where I is the identity matrix.

Stein’s Unbiased Risk Estimator (SURE) yields an unbiased estimate of the
mean squared error (MSE) associated with an estimator h(y) of z. The SURE
risk is defined as

2

2 2 X oh.
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where the final term corresponds to the divergence of the estimator with respect
to its input. As established by Stein [16] and later adapted to image denoising
settings [17], the estimator in Eq. (2) satisfies

[z — h(y)IQ}

Eaenroorn) { L b = By (101(0). Q

Equation (3) formalizes the unbiasedness property: the expected MSE equals the
expected SURE risk under i.i.d. Gaussian noise. While Eq. (2) is attractive for
parameter optimization, obtaining a closed-form expression for the divergence
term is feasible only for a limited class of estimators, such as linear filters or
non-local means [26,27]. For more general estimators, including modern deep
neural networks, direct evaluation of this term becomes intractable, motivating
approximate strategies.

2.2 Monte-Carlo SURE (MC-SURE)

Monte-Carlo SURE (MC-SURE), proposed by Ramani et al. [18], offers a practi-
cal stochastic approximation of the divergence term in Eq. (2). Let b ~ N(0,1) €
RY be an auxiliary Gaussian vector independent of both n and y. Ramani et
al. [18] showed that the divergence term can be expressed as

) _
Zaigy(ly) i {BT <h(y+ez)—h(y)>}. (4)

Applying Eq. (4) to the divergence term in Eq. (2) yields the Monte-Carlo ap-
proximation

oY " (nly + eb) — b)) (5)

where € is a small positive scalar controlling the finite-difference approximation.
This formulation enables the use of SURE-based objectives for estimators whose
analytical divergence is unavailable.
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2.3 Optimization of Deep Denoisers via SURE-Derived Losses

Building on the MC-SURE approximation in Eq. (5), SURE can be used as a
surrogate loss for the unsupervised optimization of deep neural network (DNN)-
based denoisers [19]. In this setting, only noisy observations are required during
training, eliminating the dependence on clean ground truth data inherent to
supervised approaches. Using a batch of M noisy images {y(j ) }in1 and a denoiser
parameterized by 6, the MC-SURE training objective can be written as

M
Lsure (¢ Z

n ZL(Bm)T (he(y(j) + b)) — he(yu))) ] 7 (6)

€

Hy(J) hao( (J))H2 o2

where N denotes the dimensionality of the data and b is an independent
Gaussian perturbation for each training sample. The loss in Eq. (6) combines
a data fidelity term, a noise-variance correction, and a Monte-Carlo estimate of
the divergence, yielding a tractable surrogate for the MSE.

These estimators were originally developed and evaluated primarily in generic
imaging settings, but they provide a flexible framework that can be adapted
to domain-specific applications. In the remainder of this paper, we build upon
these foundations to instantiate SURE-, eSURE-, and Poisson-based unbiased
risk estimators for MRI denoising, and to examine their relative behavior under
Gaussian and Poisson noise in realistic medical imaging scenarios.

3 Methods

This section presents the estimator-driven training formulations used in our
study and clarifies their relationship to commonly used self-supervised denoising
objectives. We first revisit the Noise2Noise (N2N) objective [12] to highlight the
statistical condition under which training on pairs of noisy images is equivalent
to supervised MSE training. We then summarize the SURE-derived training ob-
jectives and introduce the extended SURE (eSURE) setting for two noisy obser-
vations. These formulations are used directly in our Gaussian-noise experiments,
while the Poisson-risk counterpart (PURE/ePURE) is presented in Section 5.

3.1 Revisiting Noise2Noise

Noise2Noise trains a denoiser using two noisy observations of the same under-
lying image, avoiding the need for clean targets [12]. Let « denote the unknown
clean image and let y and z be two noisy measurements generated from the
same z. The denoiser is represented by hg(-) with parameters 6. The supervised
objective minimizes the expected MSE E{||z — hg(y)||?}, but x is unavailable in
our setting.
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To connect N2N to the supervised objective, we expand the MSE by adding
and subtracting z:

Ewy) {1z —ho@)*} =Bz B0 {llz — 2+ 2= he@)|* [2}] . (7)

Expanding the square yields

Ey) {lz = he @)} = Eax [Ey,z) 12 {12 = hoW)1? + 2(2 — 2) T ho(y) | 2}] +C<Z§)St-

The key condition for equivalence is that the cross-term vanishes, i.e., E{(z —
x)Thy(y)} = 0. This holds when the residual noise (z — x) has zero mean and
is uncorrelated with hy(y) given x (for example, under independent noise re-
alizations with zero mean under standard assumptions). Under this condition,
minimizing the supervised MSE is equivalent (up to an additive constant) to
minimizing the N2N objective

E(m,y,z) {Hz - h@(y)||2} : (9)

This perspective is useful for our study because it clarifies why, when two suitable
noisy realizations are available, N2N can match supervised performance even
without clean targets.

Finally, Eq. (8) also highlights a practical caveat. If the “target” image is
itself a low-quality proxy for x (e.g., mildly denoised, averaged, or otherwise
imperfect), then (z—2x) may not behave like a zero-mean term independent of the
network input, and the cross-term may become non-negligible. This motivates
risk-estimator-based objectives that do not rely on clean or proxy targets.

3.2 Extended SURE and Monte-Carlo SURE

SURE allows an unbiased estimate of the MSE under additive i.i.d. Gaussian
noise using only a single noisy observation. However, in many imaging pipelines
one can form two observations of the same anatomy (e.g., by repeated acquisi-
tion, split measurements, or controlled noise injection). eSURE extends SURE to
exploit such paired observations, and it also provides a principled bridge between
N2N-type training and SURE-derived losses [20].

Concretely, let y; ~ N (m,agll ) denote a noisy observation of x, and let
z ~ N(0,0%I) be an additional Gaussian perturbation independent of y;. We
form a second observation y, = y1 + 2, so that y» ~ N(z, (0, + 02)I). The
eSURE identity states that the MSE of hg(y2) can be estimated without z via

Ep { gyl = Bt} = B G0 lm) )} (10)

where the eSURE risk +(+) is given by

1 2 o 203 > Ohi(y2)
V(he(yQ)ayl) = NHyl - h9(y2)“ - Jyl + N ; a(y2)z . (11)
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Equations (10)-(11) provide the training objective we use for Gaussian denoising
when paired noisy observations are available.

As in standard SURE, the divergence term in Eq. (11) is generally intractable
for deep networks. We therefore adopt the Monte-Carlo approximation (MC-
SURE) [18,19]. Let b ~ NV(0,I) be an auxiliary Gaussian vector independent of
y2. The divergence can be estimated by the stochastic finite-difference identity

E; {BT <h9(y2 + 656) - he(l&)) } , (12)

where € > 0 controls the finite-difference approximation. In practice, we use a
small € and a single Monte-Carlo sample per training example, which yields an
efficient and stable estimator for training.

4 Experiments and Results

This section evaluates estimator-driven training for MRI denoising under con-
trolled Gaussian corruption and reports both quantitative and qualitative out-
comes.

4.1 Dataset and Preprocessing

Experiments were conducted on fully sampled 3T knee MRI scans from 22 sub-
jects (11 male, 11 female) [28]. The dataset facilitates high-resolution volumes
of size 320 x 320 x 256, acquired on a 3T whole-body scanner using a sagittal
3D FSE CUBE sequence with proton-density weighting and fat saturation. Each
knee was positioned in an 8-channel HD knee coil and aligned from anterior to
posterior with a tolerance of £10° relative to the isocenter. We slice the recon-
structed volumes into 320 x 256 planes and form two-view datasets (axial and
coronal) for training and evaluation. For each view, 1000 images are used for
training and 100 images are held out for testing.

To study estimator-driven training under known corruption levels, additive
white Gaussian noise is synthetically applied to the clean reconstructions at
test time. For paired-observation objectives, noisy pairs are generated from the
same underlying slice according to the constructions described in Section 3; in
particular, the conditions underlying the Noise2Noise equivalence in Egs. (7)-(9)
and the eSURE objective in Eqgs. (10)-(11) guide our pairing protocol.

4.2 Experimental Setup

We consider two Gaussian noise regimes to evaluate robustness as corruption in-
creases: (1) o = 25, representing moderate corruption, and (ii) o = 50, represent-
ing a substantially more challenging setting. We compare five approaches: BM3D
[8], DuCNN trained with MC-SURE [18,19], DnCNN trained with Noise2Noise
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[12], DnCNN trained with eSURE [20], and a supervised DnCNN trained with
MSE using clean targets (included as an upper-bound reference).

DnCNN is used as the denoising backbone [10]. The network consists of 20
convolutional layers with batch normalization and ReLU activations. Training
uses an initial learning rate of 1073, reduced to 10~ after 40 epochs, with a batch
size of 128. All experiments are implemented in PyTorch and run on an NVIDIA
GeForce RTX 3090 (24 GB). Performance is measured using peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM). The SURE-related objectives
follow the formulations in Section 2: the single-observation risk is estimated
using MC-SURE, using the finite-difference approximation in Eq. (5), and the
paired-observation objective uses eSURE with a Monte-Carlo approximation of
the divergence (Eq. (12)).

4.3 Quantitative Results

The following results address RQ1 and RQ2 by comparing single-image SURE,
paired-observation eSURE, Noise2Noise, and supervised training under matched
Gaussian noise conditions. Before reporting results, we clarify nomenclature in
Table 1. DnCNN-SURE denotes DnCNN trained with the Monte-Carlo SURE
objective in Eq. (6). DnCNN-SURE* is a simplified baseline that omits the
Monte-Carlo divergence correction term (the last term in Eq. (6)), i.e., it trains
using only the data-fidelity component |y — hg(y)||? together with the noise-
variance offset. This variant is included to isolate the empirical contribution of
the divergence term to optimization stability and final reconstruction quality. Ta-
ble 1 reports PSNR for axial and coronal views across the two noise regimes. Sev-
eral consistent patterns emerge. First, eSSURE improves over single-observation
SURE training in all settings, indicating that exploiting paired observations of-
fers a stronger and more stable learning signal than relying on a single noisy
measurement. Second, eSURE tracks Noise2Noise closely. In the moderate-noise
setting (o = 25), the two methods are essentially tied in axial views (33.96 vs.
33.98dB) and differ only marginally in coronal views (32.46 vs. 32.56dB). In
the stronger-noise setting (0 = 50), eSURE yields the best PSNR among the
unsupervised /self-supervised objectives in both views, with gains over N2N of
0.10dB (axial) and 1.13dB (coronal). These trends are consistent with the the-
oretical relationship between N2N and eSURE discussed in Section 3: when the
cross-term in Eq. (8) is suppressed, N2N approximates supervised MSE train-
ing, and eSURE offers an estimator-driven alternative that remains effective
even when the paired observations are not strictly independent. DnCNN-MSE
denotes supervised training using fully sampled reconstructions as clean targets,
evaluated under matched noise levels and normalized to the same intensity range
as all unsupervised methods.

4.4 Qualitative Results

Quantitative metrics alone do not fully capture clinical utility, particularly when
diagnostically relevant cues are subtle. Figures 1 and 2 therefore provide rep-
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Table 1. PSNR (dB) on 3T knee MRI for axial and coronal views. Best results per
row are in bold.

3T Knee MRI (Axial View)

Methods|BM3D[8] DnCNN-SURE DnCNN-SURE* DnCNN-N2N DnCNN-eSURE DnCNN-MSE
o=25 29.18 31.56 28.62 33.96 33.98 34.12

o =250 27.82 31.55 26.05 31.53 31.63 31.88

3T Knee MRI (Coronal View)

Methods/BM3D|[8] DnCNN-SURE DnCNN-SURE* DnCNN-N2N DnCNN-eSURE DnCNN-MSE
o=25 28.96 32.55 28.41 32.46 32.56 32.82

o =50 27.61 28.75 25.72 28.86 29.99 30.21

Ground Truth Noisy SURE bm3d N2N eSURE

Fig. 1. Denoised results of BM3D[8] and DnCNN trained with different objectives on
axial slices for Gaussian noise o = 25 and o = 50.

resentative denoising outputs for both views at ¢ = 25 and ¢ = 50. In these
examples, BM3DI8] tends to suppress noise at the expense of fine texture, pro-
ducing visibly smoother structures. Single-observation SURE training improves
sharpness relative to BM3D[8], but residual grain and mild structural washout
remain apparent in the stronger-noise regime. In contrast, eSURE consistently
retains sharper boundaries and more coherent texture, with reconstructions that
are visually close to N2N and, in the o = 50 coronal setting, noticeably cleaner.

4.5 Discussion

The empirical findings reinforce two practical messages about estimator-driven
learning in MRI denoising. First, paired-observation training is valuable even
when the underlying estimator remains unbiased in expectation. MC-SURE
replaces the intractable divergence with a stochastic approximation (Eq. (5)),
which introduces variance into the training signal; in this setting, the additional
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Fig. 2. Denoised results of BM3D[8] and DnCNN trained with different objectives on
coronal slices for Gaussian noise o = 25 and o = 50.

structure provided by a paired observation in eSURE tends to stabilize opti-
mization and improve final fidelity. This effect is reflected by consistent gains of
eSURE over DnCNN-SURE across both views and both noise levels in Table 1.

Second, eSURE behaves in practice as a close counterpart to Noise2Noise
under Gaussian corruption, while offering a more explicit risk-estimation inter-
pretation. At o = 25, eSURE essentially matches N2N, suggesting that both
objectives recover similar solutions when the assumptions behind the N2N de-
composition are well satisfied. As noise increases, the coronal-view results indi-
cate that eSSURE can provide an advantage, which is consistent with the intuition
that coupling a paired-observation fidelity term with an explicit divergence cor-
rection can better control bias-variance trade-offs in strong corruption. Overall,
these results suggest that eSURE serves as a reliable estimator-driven alterna-
tive when paired observations are available or can be constructed, and that it
can approach N2N performance without requiring clean targets.

Finally, the observed differences in Figs. 1 and 2 underscore that improve-
ments are not limited to PSNR. In knee MRI, clinically relevant cues often
manifest as low-contrast boundaries and fine texture. Across both views, eS-
URE tends to preserve these cues more faithfully than BM3D[8] and single-
observation SURE training, especially in the stronger-noise regime. Taken to-
gether, the quantitative and qualitative evidence supports the use of estimator-
driven paired-observation training as a practical pathway for MRI denoising
when clean references are unavailable.
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5 Poisson Unbiased Risk Estimation for MRI Denoising

In this section, N denotes the number of pixels per image, consistent with the
Gaussian-noise formulations in Sections 2 and 3. Gaussian noise is a convenient
and widely used approximation for modeling MRI corruption, particularly when
analyzing estimator behavior under additive perturbations. However, several
imaging regimes exhibit signal-dependent variability, where uncertainty increases
with intensity and low-signal regions become disproportionately unreliable. To
study estimator-driven learning beyond the additive Gaussian setting, we con-
sider a Poisson corruption model as a controlled proxy for intensity-dependent
variance noise and adopt Poisson unbiased risk estimation (PURE) as the cor-
responding training principle.

5.1 Poisson Unbiased Risk Estimator (PURE)

Under a Poisson observation model, the variance of each measurement is tied to
its mean, which invalidates Gaussian SURE assumptions and can bias training
if Gaussian objectives are applied directly. Poisson Unbiased Risk Estimation
(PURE) addresses this limitation by providing an unbiased surrogate of the
mean squared error (MSE) that depends only on the noisy observation and
discrete perturbations of the estimator [21, 24].

Let z € Rf denote the clean image and let

y; ~ Poisson(z;), ¢=1,...,N, (13)

denote the observed Poisson-corrupted image. For a denoising function h(-), the
Poisson unbiased risk estimator can be written as

N
PURE(h,y) = 3 [(hi(y) = 9 = i + 20 (stw) — hly — )], (19)

where e; denotes the canonical basis vector corresponding to pixel ¢. This esti-
mator is unbiased with respect to the Poisson distribution and depends only on
the noisy observation y.

Direct evaluation of Eq. (14) requires computing h(y — e;) for every pixel,
which is computationally prohibitive for high-resolution images and deep net-
works.

5.2 Monte-Carlo Approximation and Paired-Observation
Stabilization

To make PURE tractable in deep learning settings, we adopt a Monte-Carlo
approximation by randomly sampling a subset of pixel indices per image, follow-
ing prior work on practical PURE implementations [24, 25]. Concretely, for each
training image we sample K indices uniformly at random from {1,..., N} (ex-
cluding indices with g1 ; = 0 to satisfy the nonnegativity constraint in y; — e;).
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The index set S is re-sampled every iteration, and we use a single Monte-Carlo
sample per image (i.e., one sampled set S) to keep training efficient while main-
taining stable gradients. This approximation yields stable gradients while avoid-
ing the cost of evaluating the estimator at every possible discrete perturbation.
In addition, unbiased risk estimators under Poisson noise can exhibit high
gradient variance when only a single noisy realization is available. Motivated
by the stabilization effect observed for eSURE in the Gaussian experiments,
we further leverage paired Poisson-corrupted observations to reduce variance
during training. Given two correlated Poisson observations y; and ys of the
same underlying slice, we form an averaged observation
p | + yz’ (15)
2
which serves as a lower-variance proxy while preserving anatomical structure.
In practice, we retain the PURE-based term as the statistically grounded risk
component, and introduce an additional paired-observation stabilization term
based on z. Importantly, once this extra fidelity term is added, the overall train-
ing loss is no longer a strictly unbiased estimator of the MSE; rather, it is a
variance-reduction modification that empirically stabilizes optimization and re-
duces gradient noise in low-count regimes, analogous in spirit to the stabilization
gained by paired observations in eSSURE under Gaussian noise. We therefore op-
timize an ePURE-style objective of the form

1
Lepure(d) = e Z {(he(yl)i —y1.4)% =y
icSs

+ 2y1,i (hé(yl)l — hg(y1 — ei)i):| (16)
8 2 llz = R,

where S is a randomly sampled set of K pixel indices, and 8 controls the
strength of the stabilization term.

Nonnegativity constraint. Eq. (14) involves evaluating h(y — e;), which requires
y; > 1 to preserve nonnegativity. In practice, we restrict the sampled indices to
those with y; ; > 1; if a sampled index has y;; = 0, it is skipped (and replaced

by another index) to avoid invalid negative inputs.

5.3 Poisson Noise Construction and Experimental Protocol

We apply synthetic Poisson corruption to magnitude MRI slices to create a
controlled count-driven noise setting. Specifically, each clean slice x is first nor-
malized to [0,1] and scaled to a photon-rate domain as & = Az, where A con-
trols the overall count level. A noisy observation is then generated pixelwise as
y ~ Poisson(Z), followed by rescaling back to the original intensity range by y/\.
We report results for A € {0.5,1.0} to span low- and moderate-count regimes.
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Table 2. PSNR and SSIM for Poisson unbiased risk training on 3T knee MRI (coronal
view).

Noise Level PSNR (dB) SSIM
A=0.5 31.68 0.934
A=1.0 32.45 0.947

All other training details follow the Gaussian experiments to ensure that
observed differences are attributable to the learning objective rather than ar-
chitecture or optimization. We train DnCNN using the Poisson unbiased risk
objective described above and evaluate on coronal slices of the 3T knee MRI
dataset described in Section 4 using PSNR and SSIM.

5.4 Results under Poisson Noise

These experiments address RQ3 by evaluating whether a stabilized Poisson
unbiased risk objective can support effective unsupervised MRI denoising under
signal-dependent noise.

Table 2 reports quantitative results under Poisson corruption. The estimator-
driven training remains stable across both intensity levels and achieves high
structural fidelity, with SSIM above 0.93 in the low-count regime and above 0.94
in the higher-count regime. Figure 3 provides qualitative examples. As Poisson
corruption increases, thin boundaries and low-contrast cartilage structures are
easily obscured in the noisy inputs. The proposed estimator-driven approach
suppresses count-driven noise while maintaining boundary sharpness, indicating
that the objective preserves diagnostically relevant structure rather than simply
smoothing low-intensity regions.

5.5 Discussion

The Poisson experiments complement the Gaussian findings by demonstrating
that the estimator-driven perspective extends beyond additive noise when the
loss formulation respects the underlying noise statistics. The paired-observation
construction in Eq. (15) plays a role analogous to eSURE in the Gaussian set-
ting by reducing estimator variance and improving training stability, while the
discrete Poisson risk formulation ensures statistical consistency. Taken together
with Section 4, these results support a unified message: when clean targets are
unavailable, unbiased risk estimation provides a principled and practical founda-
tion for training denoisers directly from noisy MRI across different noise regimes.

6 Conclusion

This work studied estimator-driven learning as a practical alternative to super-
vised denoising for magnetic resonance imaging, where clean ground truth data
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Lambda 0.5

Lambda 1.0

Fig. 3. Denoising results on coronal knee MRI under Poisson noise at different intensity
levels using Poisson unbiased risk training.

is difficult to obtain. We focused on adapting and validating unbiased risk esti-
mation frameworks—SURE, eSURE, and a Poisson-based extension—within a
realistic MRI denoising pipeline, emphasizing stability, noise-model fidelity, and
deployability. Under additive Gaussian noise, eSURE consistently outperformed
single-image SURE/MC-SURE training and closely matched Noise2Noise per-
formance across axial and coronal views. On 3T knee MRI, eSURE achieved
gains of up to 2.4dB in PSNR over standard SURE. These results indicate that
exploiting paired noisy observations provides a more stable and effective learning
signal, even when the observations are correlated and clean targets are unavail-
able. For signal-dependent noise, we extended the estimator-driven approach to
the Poisson setting using an ePURE-style formulation based on correlated noisy
pairs. On coronal knee MRI slices, this method achieved PSNR values exceeding
32dB and SSIM above 0.94 at higher Poisson intensities, while preserving fine
anatomical structure in low-signal regions. This demonstrates that unbiased risk
estimation can be operationalized beyond Gaussian assumptions when the loss
formulation reflects the underlying noise statistics. Overall, the results show that
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unbiased risk objectives, particularly when combined with paired observations,
provide a reliable foundation for unsupervised MRI denoising. The proposed
methods offer performance comparable to supervised and Noise2Noise baselines
without requiring clean or proxy references, making them well suited for clinical
and research imaging workflows. Future work will explore extensions to mixed
noise models, accelerated MRI reconstruction, and task-driven settings where
denoising supports downstream clinical analysis.

Appendix

A. Implementation Details

This appendix summarizes implementation-specific details that support repro-
ducibility and are not central to the methodological exposition in the main text.

Monte-Carlo approximation. For all SURE- and eSURE-based objectives, the
divergence term was approximated using the Monte-Carlo finite-difference esti-
mator proposed in [18,19]. A single random perturbation vector was used per
training sample, with a fixed step size of e = 1073, This configuration was found
to provide stable optimization across all experiments, and increasing the number
of Monte-Carlo samples did not yield observable performance gains.

DnCNN-SURE* baseline. The DnCNN-SURE* variant reported in Table 1 cor-
responds to a reduced SURE objective in which the Monte-Carlo divergence
term is omitted. Specifically, training is performed using only the data-fidelity
term and the noise-variance correction. This baseline is included to isolate the
empirical contribution of the divergence term in SURE-based optimization.

Poisson noise generation. For experiments under Poisson corruption, magnitude
MRI slices were normalized to the range [0,1] and scaled by a factor A to de-
fine Poisson rate parameters. Noisy observations were generated via pixelwise
Poisson sampling and rescaled by 1/ to recover the original intensity range.
The values A € {0.5,1.0} were selected to represent low- and moderate-count
regimes, respectively.

Monte-Carlo PURE sampling and stabilization. For Poisson-risk training, we
approximate PURE by sampling K = 2048 pixel indices per image uniformly at
random (excluding indices with y;,; = 0 to ensure y; — e; > 0). The sampled
index set is re-drawn each iteration. We optimize Eq. (16) with a small paired-
observation stabilization weight 3, using 8 = 0.20 for the low-count regime (A =
0.5) and S = 0.10 for the moderate-count regime (A = 1.0), which empirically
reduces gradient variance without dominating the PURE term.
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