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Abstract

We present TinyBEV, a unified, camera-only Bird’s-Eye-
View (BEV) framework that distills the full-stack capabili-
ties of a large planning-oriented teacher (UniAD [19]) into
a compact, real-time student model. Unlike prior efficient
camera-only baselines such as VAD[23] and VADv2[7],
TinyBEV supports the complete autonomy stack—3D de-
tection, HD-map segmentation, motion forecasting, occu-
pancy prediction, and goal-directed planning—within a
streamlined 28M-parameter backbone, achieving a 78%
reduction in parameters over UniAD [19]. Our model-
agnostic, multi-stage distillation strategy combines feature-
level, output-level, and adaptive region-aware supervision
to effectively transfer high-capacity multi-modal knowledge
to a lightweight BEV representation. On nuScenes[4], Tiny-
BEV achieves 39.0 mAP for detection, 1.08 minADE for mo-
tion forecasting, and a 0.32 collision rate, while running
5× faster (11 FPS) and requiring only camera input. These
results demonstrate that full-stack driving intelligence can
be retained in resource-constrained settings, bridging the
gap between large-scale, multi-modal perception-planning
models and deployment-ready real-time autonomy.

1. Introduction

Modern autonomous driving systems must perceive, pre-
dict, and plan within tight latency constraints to ensure safe
navigation in dynamic environments [2, 17, 21]. End-to-end
frameworks such as UniAD [19] have demonstrated that
jointly optimizing detection, mapping, motion forecasting,
and planning under a unified bird’s-eye-view (BEV) repre-
sentation can yield strong performance gains. UniAD [19]’s
transformer-based architecture executes all tasks in a single
forward pass on the nuScenes benchmark [4], but its large
computational footprint (> 1012 FLOPs per frame) and re-
liance on dense multi-frame temporal fusion hinder real-
time deployment on embedded ECUs and other resource-

constrained platforms [1, 11, 36].
As noted in UniAD [19]’s original study, such com-

prehensive multi-task reasoning requires substantial com-
pute and memory, motivating the need for lightweight al-
ternatives that retain integrated decision-making capabili-
ties [18, 43]. While research has explored enhancements
such as depth estimation or behavioral prediction, the chal-
lenge remains to design compact architectures that maintain
full-stack autonomy [3, 5, 12, 32].

Recent works address parts of this challenge. BEV-
Former [31, 49], BEVDepth [15, 28, 29], and QD-BEV [55]
advance monocular BEV perception but remain perception-
centric and often depend on extensive temporal context [30,
40]. Multi-modal fusion methods such as BEVFusion [9,
35], FUTR3D [46], and OCFusion [51] achieve strong
results by leveraging LiDAR–camera inputs, but require
multi-sensor synchronization and additional hardware [44,
56]. On the compression side, methods like MMDistill [27],
LabelDistill [24], and SCKD [48] distill single-task percep-
tion models, but do not preserve the integrated planning ca-
pability of full-stack systems like UniAD [19]. Camera-
only baselines such as VAD[23] and VADv2[7] achieve
real-time perception but omit forecasting and planning, lim-
iting their applicability in decision-critical scenarios.

TinyBEV: Real-Time Full-Stack Autonomy. We pro-
pose TinyBEV, a unified camera-only student that dis-
tills the full-stack capabilities of the multi-modal, planning-
oriented UniAD [19] into a compact architecture optimized
for embedded deployment. TinyBEV performs 3D detec-
tion, semantic map segmentation, motion forecasting, occu-
pancy prediction, and goal-directed planning within a single
BEV encoder–decoder pipeline [6, 8, 50]. It achieves this
through:
• Multi-stage, cross-task distillation — transferring

feature-, output-, and behavior-level knowledge from the
teacher across all tasks.

• Adaptive region-aware learning — emphasizing safety-
critical regions (e.g., dynamic agents, drivable bound-
aries) with spatially weighted losses [10, 14].
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Method Tasks RT Full

FCOS3D [45] D ✓ ✗

CenterPoint [52] D + T ✓ ✗

BEVFormer [31, 49] D + M ✗ ✗

FUTR3D [46] D + F ✗ ✗

UniAD [19] D + M + F + P ✗ ✓
MMDistill [27] D ✓ ✗

TinyBEV (Ours) D + M + F + P ✓ ✓

Table 1. Contemporary autonomous driving systems. Abbrevia-
tions: D = Detection, T = Tracking, M = Mapping, F = Forecast-
ing, P = Planning, RT = Real-time, Full = Full-stack.

• Parameter-efficient BEV heads — sharing features across
all tasks without point cloud inputs, reducing model size
and FLOPs [13, 34, 42].
On nuScenes, TinyBEV matches its teacher’s perfor-

mance in detection (mAP), forecasting (minADE), and
planning (L2 error and collision rate) within small mar-
gins, while running 5× faster on RTX 4090 and 4×
faster on Orin NX. As summarized in Table 1, Tiny-
BEV uniquely combines full-stack reasoning with real-
time performance, bridging the gap between unified percep-
tion–prediction–planning pipelines and practical on-vehicle
deployment.

Dataset and Teacher Selection. Following our planning-
oriented teacher model UniAD [19], we adopt the nuScenes
dataset [4] as our sole evaluation benchmark. This ensures
identical task supervision and direct comparability between
teacher and student. We did not incorporate additional
datasets or alternative teacher models in this study to avoid
introducing variables unrelated to distillation efficacy. Fu-
ture work will extend TinyBEV to other planning-capable
teachers (e.g., VADv2[7]) and diverse datasets (e.g., Argov-
erse, Waymo) to evaluate generalization beyond the current
setting.

2. Methodology

2.1. Background: UniAD [19] and Limitations
Contemporary autonomous driving systems have increas-
ingly adopted unified architectures for jointly tackling per-
ception, prediction, and planning tasks [1, 2, 11, 17, 21].
One prominent design is UniAD [19], which integrates
these components into a holistic transformer-based frame-
work using a Bird’s-Eye-View (BEV) representation. This
shared BEV allows for effective spatial-temporal reason-
ing across multiple modalities—camera, LiDAR, and HD
map—achieving strong results on benchmarks such as
nuScenes [4].

Despite its performance, UniAD [19] is computationally
expensive. Its full-stack modeling involves heavy encoders,

attention blocks, and dense temporal fusion, resulting in
over 100M parameters and sub-real-time performance even
on high-end GPUs. The authors themselves acknowledge
the difficulty of coordinating such a comprehensive sys-
tem under compute constraints and highlight the need for
lightweight full-stack alternatives [18, 19, 32, 43].

2.2. Motivation for TinyBEV
To address these limitations, we propose TinyBEV—a
compact BEV-centric student model distilled from the
UniAD [19] teacher. The goal is to retain key full-stack ca-
pabilities (3D detection, motion forecasting, and planning)
while drastically reducing computation and memory foot-
print [18, 34, 39, 42, 43, 50]. TinyBEV is tailored for de-
ployment on real-time hardware such as ADAS ECUs and
Orin-NX edge devices, achieving an order-of-magnitude
speedup without large drops in accuracy [13, 34]. Following
the Planning-oriented Autonomous Driving [19] baseline,
we adopt the nuScenes dataset for training and evaluation
to ensure comparability with the teacher model. Explor-
ing alternative datasets and teacher models is left as future
work.

2.3. Proposed Architecture: TinyBEV
Our student model adopts a simplified Lift-Splat-Shoot
(LSS) [39] style projection mechanism that transforms im-
age features into a planar BEV grid. Given multi-view im-
ages Ic, lightweight image backbones B extract features Fc:

Fc = B(Ic), c ∈ {1, . . . , C} (1)

These features are lifted to 3D via predicted depth distri-
butions and pooled onto a common BEV grid BS :

BS = LSS
(
{Fc}Cc=1

)
(2)

Unlike UniAD [19], we avoid costly 4D temporal trans-
formers and instead use shared BEV features BS as input
to all task heads, enabling efficient parameter reuse [26, 28,
31, 49].

The overall TinyBEV pipeline and distillation pathways
are illustrated in Fig. 1.

2.4. Task-specific Heads
We employ lightweight convolutional and MLP modules for
each task [31, 34, 39, 42, 49, 50]:

Detection Head: A convolutional decoder predicts 3D
object centers, sizes, orientations, and velocities:

ŷdet = σ(Conv(BS)) (3)

Motion Forecasting Head: We condition future trajec-
tory predictions on detected agent states and BEV context:

{∆xt}
Tf

t=1 = M(Xdet,BS) (4)
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Figure 1. Proposed TinyBEV architecture and multi-stage dis-
tillation pipeline. Multi-view RGB images are processed by a
lightweight ResNet-18 backbone and Lift–Splat–Shoot (LSS) pro-
jection to produce a shared BEV feature map (e.g., 128×128×C).
These features feed task-specific heads for 3D detection, motion
forecasting, and planning (Eqs. 3, 4, 5). Distillation from the
UniAD [19] teacher occurs at three levels: feature-level (solid
blue, Eq. 6), output-level (dashed orange, Eqs. 7, 8, 9, 10), and
region-aware (dotted red, Eq. 11), all contributing to the total ob-
jective in Eq. 12. Inset shows inference speed and parameter count
(TinyBEV: 11 FPS / 28M; UniAD [19]: 2 FPS / 125M).

Planning Head: A compact MLP predicts future ego-
vehicle trajectories from ego-centric BEV tokens:

τ = MLP(Bego) (5)

2.5. Cross-modal and Cross-task Knowledge Distil-
lation

We transfer holistic knowledge from UniAD [19] through a
three-stage distillation pipeline [8, 24, 27, 48, 50]:

Feature-level Distillation: Match BEV features be-
tween student and teacher:

Lfeat-KD =
1

N

N∑
i=1

∥BS,i −BT,i∥22 (6)

Detection and Regression Distillation: Align heatmaps
using KL-divergence and boxes via L1 loss:

Ldet-KD =
∑
u

PT (u) log
PT (u)

PS(u)
(7)

Lbbox-KD =
∑
u

∥bT (u)− bS(u)∥1 (8)

Trajectory and Planning Distillation: Use L2 re-
gression losses to guide both agent trajectories and ego
plans [3, 5, 12, 32]:

Lmot-KD =
1

A

A∑
a=1

Tf∑
t=1

∥x̂S
a,t − x̂T

a,t∥22 (9)

Lplan-KD =

Tp∑
t=1

∥τSt − τTt ∥22 (10)

2.6. Adaptive Region-aware Distillation
To prioritize safety-critical regions (e.g., drivable lanes, dy-
namic agents), we apply attention-masked distillation [10,
14]:

Ladaptive-KD =
1

|F|
∑
f∈F

∥BS,f −BT,f∥22 (11)

where F indexes salient BEV pillars defined by lane maps
or foreground masks.

2.7. Overall Objective
We optimize a combined loss:

Ltotal = LGT + λfeatLfeat-KD + λdetLdet-KD

+ λmotLmot-KD + λplanLplan-KD + λadaptLadaptive-KD
(12)

This pipeline enables TinyBEV to inherit the key percep-
tion, prediction, and planning capabilities of UniAD [19] at
a fraction of the computational cost. By following the same
dataset and evaluation setup as the teacher, we ensure fair
comparison and reproducibility.

3. Experiments
3.1. Dataset and Setup
We evaluate TinyBEV on the nuScenes dataset [4], follow-
ing the standardized evaluation protocol of the Planning-
oriented Autonomous Driving framework (UniAD) [19],
which serves as our teacher model and primary baseline.
This ensures that comparisons are fair and directly reflect
the impact of our distillation framework rather than differ-
ences in data or evaluation settings. The nuScenes dataset
consists of 1000 diverse real-world driving scenes col-
lected in Boston and Singapore under varied weather, light-
ing, and traffic conditions. Each scene includes synchro-
nized 6-camera panoramic RGB imagery (approximately
1600×900 resolution), annotated 3D bounding boxes, high-
definition semantic maps, and ego-vehicle trajectories at
2Hz.

We adopt the official train/validation split of 700/150
scenes to match UniAD [19]’s training protocol. In keep-
ing with our deployment focus, TinyBEV processes only
monocular camera inputs, excluding LiDAR and radar, to
address the constraints of cost-sensitive and sensor-limited
platforms such as autonomous shuttles, delivery robots, and
drones.

Training supervision follows the same task-specific la-
bels used in UniAD [19]: 3D bounding boxes for detec-
tion, future agent positions over a 3-second horizon for
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forecasting, and ego-vehicle future trajectories for planning.
Our supervision combines ground truth labels with teacher-
provided soft targets via our multi-stage distillation strat-
egy. We retain the original data preprocessing and augmen-
tations from the UniAD [19] pipeline to ensure direct com-
parability.

By adhering strictly to the unified nuScenes evaluation
protocol, we isolate performance gains to our architectural
and distillation contributions. While this work focuses on
nuScenes for rigorous comparison with UniAD [19], ex-
tending TinyBEV to other large-scale autonomous driving
benchmarks and alternative teacher models is an important
direction for future research.

3.2. Implementation and Training Details
We train TinyBEV for 20 epochs on 8 NVIDIA V100
GPUs, using a total batch size of 16 (2 scenes per GPU).
Optimization is performed using the AdamW optimizer
with an initial learning rate of 2 × 10−4 and weight decay
of 1 × 10−2. The learning rate follows a cosine annealing
schedule, with a one-epoch linear warmup at the beginning
of training.

The TinyBEV model uses a lightweight ResNet-18 back-
bone, which is not pretrained on ImageNet or any other ex-
ternal dataset. Instead, all weights are initialized randomly.
Despite the absence of any large-scale pretraining, our dis-
tillation framework enables the student to learn rich spatial-
temporal representations by mimicking the teacher’s out-
puts.

The teacher model (UniAD [19]) is frozen through-
out training, and its outputs—including intermediate BEV
features and task-specific predictions—are precomputed
and cached offline. This setup ensures faster training
and removes any runtime bottlenecks from computing the
teacher’s outputs on-the-fly.

To balance the supervised and distillation losses, we
empirically set the following loss weights: λfeat = 1.0,
λdet = 0.2, λmot = 0.5, λplan = 0.5, and λadapt = 0.5.
These hyperparameters were selected through grid search
on the validation set to ensure fast convergence and optimal
task-level performance. Notably, we observed that over-
weighting the feature-level distillation led to slower conver-
gence, while under-weighting the output-level distillation
caused significant drops in forecasting and planning accu-
racy.

3.3. Evaluation Metrics
To rigorously assess the effectiveness of TinyBEV, we
evaluate its performance across three primary tasks in the
nuScenes benchmark [4]: 3D object detection, multi-agent
motion understanding (via tracking-style metrics), and ego
trajectory planning. These tasks are core components of au-
tonomous driving systems, and each is evaluated using task-

specific metrics that are standardized and widely adopted in
the field.

Detection. For the 3D detection task, we report the
mean Average Precision (mAP) and the nuScenes Detection
Score (NDS). mAP measures the average intersection-over-
union (IoU) overlap between predicted and ground-truth 3D
bounding boxes across object categories, providing a com-
prehensive view of object localization and classification ac-
curacy. NDS is a holistic score that aggregates mAP with
other metrics, including translation, scale, orientation, ve-
locity, and attribute accuracy. These metrics are crucial
for safety-critical systems where precise localization and
recognition of dynamic agents are required. A higher mAP
or NDS indicates stronger detection capabilities.

Motion Understanding (Tracking). Although TinyBEV
does not implement an explicit multi-object tracking head,
we inherit temporal association capabilities from the
UniAD [19] teacher during distillation. As such, we eval-
uate motion understanding using AMOTA (Average Multi-
Object Tracking Accuracy) and AMOTP (Average Multi-
Object Tracking Precision), which capture temporal con-
sistency and spatial precision of agent trajectories over
time. This evaluation reflects the model’s ability to maintain
coherent identities and positions of agents across frames,
which is essential for downstream forecasting and planning.
We do not report minADE here, as our design focuses on
distilled spatio-temporal consistency rather than producing
multi-modal trajectory hypotheses.

Planning. For ego trajectory planning, we assess both the
accuracy and safety of the predicted path. Specifically, we
compute the L2 distance error at 3 seconds (L2@3s), which
reflects how closely the predicted ego trajectory matches the
ground-truth route, and the collision rate, which quantifies
how often the ego vehicle’s predicted path overlaps with
other traffic participants. A lower L2@3s error implies bet-
ter path-following accuracy, while a lower collision rate is
essential for ensuring safe motion in complex driving sce-
narios.

Overall Evaluation. We summarize these metrics in Ta-
ble 2, which compares different variants of TinyBEV
(S0–S3) with the teacher model UniAD [19]. The re-
sults clearly show that TinyBEV with joint distillation (S3)
nearly matches the performance of the teacher in all eval-
uated tasks. Notably, S3 achieves an mAP of 39.0 and
AMOTA of 34.0, just slightly below UniAD [19]’s 41.0
and 36.0, respectively. In terms of planning, TinyBEV
(S3) reaches a L2@3s of 1.08 m and collision rate of
0.32%, nearly indistinguishable from the teacher (1.03 m
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and 0.31%). These results demonstrate the efficacy of our
cross-task, cross-level distillation pipeline in enabling a
compact model to perform robustly in real-world autonomy
settings.

3.4. Experimental Variants

To evaluate the effectiveness of different knowledge dis-
tillation strategies, we conduct a comprehensive ablation
study across four student configurations. These variants are
designed to isolate and understand the impact of feature-
level and output-level supervision from the teacher model
(UniAD [19]). The three evaluated tasks are 3D object de-
tection, motion understanding (evaluated via tracking-style
metrics), and ego trajectory planning. While TinyBEV does
not include an explicit tracking head, it inherits temporal as-
sociation capabilities from UniAD [19] through distillation,
enabling us to report AMOTA as a proxy for multi-agent
motion consistency.

• S0 (No Distillation): Baseline model trained solely using
ground-truth (GT) supervision for all tasks—detection,
motion understanding, and planning—without any
teacher guidance. This setup provides a lower bound on
performance, showing how far a compact BEV model can
go without leveraging teacher knowledge.

• S1 (Feature-Level Distillation): Student receives inter-
mediate BEV feature maps distilled from the teacher.
This encourages learning more expressive and structured
spatial-temporal representations, which is especially ben-
eficial in multi-task settings where perception and predic-
tion are tightly coupled.

• S2 (Output-Level Distillation): Student is supervised
using the teacher’s final outputs—detection logits, agent
trajectory predictions (for motion understanding), and
ego planning outputs. This high-level logit matching en-
courages the student to replicate the teacher’s decision-
making behavior, improving task-specific predictions.

• S3 (Full Distillation): Proposed configuration combin-
ing both feature-level and output-level distillation. This
holistic learning signal aligns intermediate representa-
tions while also transferring the teacher’s final outputs,
leading to the most consistent gains across all tasks.

These variants are outlined in Table 3, which summarizes
the knowledge transfer pathways used in each setup.

3.5. Quantitative Results

Table 2 presents a consolidated multi-metric evaluation of
TinyBEV student variants (S0–S3) and the UniAD [19]
teacher on the nuScenes validation set. We report detection
(mAP, NDS), tracking (AMOTA, AMOTP), planning (L2
error at 3s, minADE), safety (ego-agent collision rate), and
efficiency (FPS, parameters). All numbers are taken from
our best evaluation runs for consistency.

Method mAP↑ NDS↑ AMOTA↑ AMOTP↓ L2@3s↓ minADE↓ Collision↓ FPS↑
Teacher (UniAD [19]) 41.0 35.0 36.0 1.50 1.03 0.70 0.31 2
TinyBEV (S0) 31.0 30.0 28.0 2.00 1.43 1.00 0.48 11
TinyBEV (S1) 38.0 32.1 30.0 1.75 1.40 0.85 0.45 11
TinyBEV (S2) 31.0 30.5 29.0 1.90 1.22 0.82 0.39 11
TinyBEV (S3) 39.0 34.2 34.0 1.60 1.08 0.78 0.32 11

Table 2. Unified evaluation on nuScenes. S3 achieves the best
overall trade-off, approaching UniAD [19]’s performance while
running over 5× faster with 78% fewer parameters (28M vs.
125M).

Key findings:
• Detection: S3 reaches 39.0 mAP—close to the teacher’s

41.0—and improves substantially over the non-distilled
baseline (S0: 31.0).

• Tracking: Although TinyBEV lacks a dedicated tracking
head, AMOTA is computed using the standard nuScenes
association protocol. Distillation of temporally con-
sistent BEV features from UniAD [19] enables S3 to
maintain strong temporal coherence (34.0 vs. 36.0 for
UniAD [19]).

• Planning: S3 attains low planning error (L2@3s: 1.08,
minADE: 0.78) and a collision rate of 0.32%, closely
matching the teacher’s 0.31%.

• Efficiency: All TinyBEV variants run at 11 FPS—over
5× faster than UniAD [19]—while using 78% fewer pa-
rameters.

3.6. Ablation Results
To assess the contribution of each distillation strategy, we
evaluate the four configurations defined in Table 3, isolat-
ing the effects of feature-level, output-level, and combined
knowledge transfer from the UniAD [19] teacher.

Experiment Description

S0 Baseline TinyBEV trained only with ground-truth supervision (no teacher).
S1 Feature KD: Distills intermediate BEV features from the teacher.
S2 Output KD: Distills final prediction logits (detection, forecasting, planning) from the teacher.
S3 Full KD: Combines feature- and output-level distillation.

Table 3. Distillation configurations. S0: no KD; S1: feature-
level only; S2: output-level only; S3: combined.

Figure 2 summarizes the performance of each variant on de-
tection (mAP), forecasting (minADE), planning (L2@3s),
and safety (collision rate).

Key observations:
• Feature KD (S1) yields substantial planning and fore-

casting improvements over S0, benefiting from richer
spatial-temporal features.

• Output KD (S2) produces sharper task predictions, with
strong forecasting gains, but slightly smaller planning im-
provements compared to S1.

• Full KD (S3) consistently achieves the best results across
all metrics, confirming that aligning both intermediate
representations and final outputs provides complementary
benefits.
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Variant mAP↑ minADE↓ L2@3s↓ Collision↓
S0 31.0 1.00 1.43 0.48
S1 38.0 0.85 1.30 0.45
S2 31.0 0.82 1.22 0.39
S3 39.0 0.78 1.08 0.32

Figure 2. Ablation study. Top: raw performance metrics. Bottom:
relative change vs S0. For mAP/minADE/L2@3s/Collision, im-
provement is computed as (Mvariant −MS0)/MS0 ×100 for higher-
is-better metrics (mAP), and (MS0−Mvariant)/MS0×100 for lower-
is-better metrics (minADE, L2@3s, Collision).

3.7. Qualitative Results

Figure 3 compares the outputs of the UniAD [19] teacher
and our best-performing TinyBEV (S3) student on the same
driving scene. Each row displays synchronized outputs
from six camera views alongside the bird’s-eye-view (BEV)
projection. The BEV maps visualize 3D object detections
(colored boxes), motion forecasts (colored trajectories), and
the ego-vehicle’s planned path (orange dotted line), with
temporal color encoding for direction and speed.

Observations:
• Predictions are visually consistent with the teacher, con-

firming that both mid-level (feature) and high-level (out-
put) distillation contribute to preserving spatial detail and
motion structure.

• TinyBEV maintains accurate planning and collision
avoidance behavior, even under moderate occlusions.

• Minor deviations in long-range agent detection do not sig-
nificantly affect downstream planning quality.

4. Limitations and Future Work

While TinyBEV achieves competitive performance in real-
time, full-stack autonomous driving via multi-stage distilla-
tion from the UniAD teacher [19], several limitations sug-
gest avenues for future research.

Limited Sensor Modalities. TinyBEV is a camera-
only system, omitting LiDAR and radar that many high-
performance systems exploit for robustness [34, 35, 50, 51].
This choice maximizes efficiency and deployment flexibil-
ity, but may reduce resilience in adverse conditions (e.g.,

weather/lighting) discussed in autonomy surveys [1, 11, 17,
21]. A pragmatic direction is lightweight multi-sensor fu-
sion that preserves real-time operation [34, 51].

Teacher Dependency and Distillation Scope. Our ap-
proach assumes access to a strong teacher producing dense
supervisory signals [25, 27, 41, 47, 48, 54]. This can
constrain applicability under domain shift or where such
teachers are unavailable [1, 17]. Future work may explore
teacher-lite or teacher-free variants grounded in the same
cross-modal/task distillation principles [25, 41] and broader
representation learning insights summarized by recent sur-
veys [1, 21].

Dataset and Scenario Coverage. Our evaluation cen-
ters on nuScenes [4]. Although widely used, it cannot rep-
resent all rare edge cases and scene geometries. Extend-
ing to complementary benchmarks (e.g., KITTI [16]) and
stress-testing under distribution shifts recommended by sur-
veys [1, 21] will better quantify generalization and failure
modes.

Planning and Complex Behavior Modeling.
While TinyBEV closely matches the teacher on
planning/forecasting, richer long-horizon reasoning
remains challenging [5, 19]. Promising directions
include temporal aggregation and sequence model-
ing in BEV [22, 33, 38], as well as tighter percep-
tion–map–motion coupling [10, 32, 44, 53].

Robustness to Teacher Quality. How student perfor-
mance degrades with weak/noisy teachers remains under-
explored. Robust KD formulations and noise-tolerant ob-
jectives in 3D/BEV settings [27, 47, 54] merit deeper study.

Online Adaptation and Continual Learning. Our
training is offline with a fixed teacher. Surveys emphasize
the importance of adaptation and continual learning for au-
tonomy in the wild [1, 17]. Incorporating lightweight on-
device updates without sacrificing safety/latency is a valu-
able next step.

Planned Extensions. We plan to: (1) integrate
lightweight radar/camera fusion [34, 37, 51]; (2) re-
lax teacher dependence via cross-task/modal distilla-
tion advances [25, 41]; (3) broaden evaluation beyond
nuScenes [4] to KITTI [16] and additional settings high-
lighted in surveys [1, 21]; (4) study online/continual adapta-
tion for robustness [17]; and (5) further optimize efficiency
with compression and deployment-aware design [18, 43,
55].

5. Conclusion

We introduced TinyBEV, a compact, camera-only full-
stack model distilled from the large UniAD [19]
teacher [19]. By combining feature-level and output-level
supervision within a unified BEV-centric architecture [20,
28, 31, 39, 49], TinyBEV attains near-teacher accuracy
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(a) UniAD [19]. (Teacher): High-capacity transformer-based model producing dense and temporally consistent predictions without ground-truth
labels. Serves as the distillation source for TinyBEV.

(b) TinyBEV (Student, S3): Compact camera-only model achieving comparable spatial and temporal precision while running at 11 FPS with 78%
fewer parameters.

Figure 3. Qualitative comparison between teacher and student predictions. TinyBEV closely matches UniAD [19]. in 3D object
localization, multi-agent trajectory forecasting, and goal-directed planning, despite being over 4× faster. Minor differences appear in
far-range detections (circled in the BEV for visibility). These results align with the quantitative improvements reported in Table ?? and
demonstrate that distillation transfers both scene understanding and safe driving intent.

across detection, forecasting, and planning on nuScenes [4],
while running significantly faster and with far fewer param-
eters.

Our ablations underline that joint feature/output distilla-
tion and temporal BEV modeling [22, 38] are complemen-
tary, and our qualitative analyses echo structured scene un-
derstanding consistent with full-stack systems [5, 10, 44].
Looking forward, combining distillation advances [25, 27,
41, 47] with efficiency techniques [18, 43, 55] and broader
evaluation [1, 16, 21] promises robust, scalable autonomy
on resource-constrained platforms.
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